195. A New Approach to 5-Thiosugars:
 5-Thio-D-Gluconhydroximo-1,5-lactone, Synthesis and Evaluation as $\boldsymbol{\beta}$-Glucosidase Inhibitor

by Philipp Ermert ${ }^{\prime}$) and Andrea Vasella $\left.{ }^{1}\right)^{*}$
Organisch-Chemisches Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich

(2.VIII.93)

Abstract

The thiolactone oxime 10 was synthesized in ten steps from the known tri- O-benzylglucose 13, which was transformed into the oxime 14 , silylated ($\rightarrow 15$), and mesylated ($\rightarrow 16$). Treatment of 16 with $\mathrm{Bu}_{4} \mathrm{NF}$ yielded the L-ido-epoxide 17 and the hydroxylamine $\mathbf{1 8}$; the isomeric D-gluco-configurated hydroxylamine $\mathbf{2 0}$ was prepared from 17. Reaction of 17 with thiourea yielded the thiirane 19. Ring opening was best effected with HBr $(\rightarrow \mathbf{2 2} \cdot \mathrm{HBr})$. The N-glycosylhydroxylamine 22 was immediately oxidized to 24 , as it reverted to 19 . Similarly, 19 was transformed into the chlorides 21 and 23 . The iodide 25 reacted with TEMPO to afford 29 besides 26 and $\mathbf{3 0}$; nucleophilic substitution of $\mathbf{2 3}, \mathbf{2 4}$, or $\mathbf{2 5}$ gave unsatisfactory yields of $\mathbf{2 6}$ or $\mathbf{2 7}$, and $\mathbf{2 8}$. Birch reduction transformed 29 into 10 which was isolated via the pentaacetate 32 , which was also transformed into the tetraacetate 33 . The weak activity of $\mathbf{1 0}$ as an inhibitor of sweet-almond and Agrobacter β-glucosidase is in keeping with categorization of the lactone and lactam oximes $1-5$ and the 5 -thiosugars $6-9$ as transition-state and substrate analogs, respectively.

Introduction. - The lactone oxime 1 [1] and the lactam oxime 3 [2] [3] as well as the corresponding N-arylcarbamates 2 [1], 4, and 5 [3] are strong competitive inhibitors of β-glucosidases. Withers et al. [4] confirmed the classification of 1 and 2 as (imperfect) transition-state analogs by comparing their K_{1} values against the wild-type and a mutant (Glu358Asp) β-glucosidase of Agrobacterium faecalis. The structural analogy between 1 and 3, and between their N-arylcarbamate derivatives, on the one hand, and their similar behaviour as inhibitors of β-glycosidases, on the other hand, indicate that the nojirilactam derivatives 3-5 are also transition-state analogs. This raises the question about the inhibitory activity of the corresponding 5 -thiolactone oximes.

The 5-thio- α-D-glucopyranose (6) [5] and 5-thio- α-L-fucose (7) [6] are reasonably strong inhibitors of α-glucosidase and α-fucosidase, respectively. The rather weak inhibitor 5-thio-D-glucal (8) [7] inhibits β-glucosidase and α-mannosidase about as well as glucal; 1-deoxy-5-thiomannose ('1-deoxythiomannojirimycin' [8]) 9 is a weak α-glucosidase inhibitor and does not inhibit sweet-almond β-glucosidase, which is inhibited by deoxymannojirimycin with a K_{I} of 5.3 mm [9]. The structure of these 5 -thiosugars and their K_{I} values indicate that they act as substrate analogs. If so, replacement of the ring heteroatom in the transition-state analogs $\mathbf{1}$ and $\mathbf{3}$ by an S-atom, leading to 10, should entail a dramatic loss of inhibitory activity. Although but a negative result, this finding would constitute evidence in favour of the classification of 1-5 as transition-state analogs, and of 6-9 as substrate analogs.

[^0]
$1 \mathrm{R}=\mathrm{H}$
$2 \mathrm{R}=\mathrm{CONHPh}$

$3 \mathrm{H}=\mathrm{H}$
$4 \mathrm{~A}=\mathrm{CONHPh}$
$5 \mathrm{R}=\mathrm{CONHC}_{6} \mathrm{H}_{4}-\mathrm{O}-\mathrm{Cl}$

6

7

8

9

10

We thus prepared the 5-thiolactone oxime 10, particularly as we required its appropriately protected precursors for the synthesis of 1-azi-5-thiopyranoses. The synthesis of $\mathbf{1 0}$, as outlined in Schemes I and 2, follows an approach which further explores (cf. [10] [11]) the potential of inter- and intramolecular displacements at $\mathrm{C}(5)$ of pyranose-derived acyclic ${ }^{2}$) oximes, and which should constitute a general approach to the preparation of 5-thioglyconolactone derivatives.

a) $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}, \mathrm{Ac}_{2} \mathrm{O}, 2^{\circ}, 1$ h. b) 0.5 m aq. $\mathrm{H}_{2} \mathrm{SO}_{4}$, dioxane, reflux, $205 \mathrm{~min}, 77 \%$ from 11. c) $\mathrm{NH}_{2} \mathrm{OH}, 96 \% \mathrm{EtOH}$, 7.5 h. d) t - $\mathrm{BuMe}_{2} \mathrm{SiCl},{ }^{1} H$-imidazole, DMF, molecular sieves ($3 \AA$), r.t., $40 \mathrm{~min}, 88 \%$ from 13 . e) MsCl , pyridine, 0° to r.t., $14 \mathrm{~h} . f$) $\mathrm{Bu}_{4} \mathrm{NF} \cdot 3 \mathrm{H}_{2} \mathrm{O}, \mathrm{THF}$, r.t., $210 \mathrm{~min} ; 17(81 \%$ from 15$)$ and 7% of 18 . g) $\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CS}, \mathrm{MeOH}$, r.t., $5 \mathrm{~d}, 86 \%$. h) LiCl, THF, reflux, $22 \mathrm{~h}, 43 \%$.

[^1]Results and Discussion. - Acid-catalyzed acetolysis of 11 afforded the diacetate 12 [15] [16], which was hydrolyzed [17] to the crystalline tri- O-benzylglucose 13 (77%; $\alpha-\mathrm{D} / \beta$-D ca. 1:1). The oxime 14 was obtained [18] almost quantitatively (Scheme 1).

Mesylation of the monoalcohol $15(88 \% ;(E) /(Z) c a .8: 2)$, obtained by selective di- O-silylation [19] of 14 , with a large excess of MsCl in pyridine proceeded smoothly, while a number of other conditions, such as MsCl and $\mathrm{Et}_{3} \mathrm{~N}$ or $(\mathrm{i}-\mathrm{Pr})_{2} \mathrm{NEt}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ led to incomplete conversion and to further transformation of the product $\mathbf{1 6}$. The mesylate 16 was desilylated with $\mathrm{Bu}_{4} \mathrm{NF} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ in THF to afford the crystalline L-ido-oxirane 17 (81% from $15 ;(E) /(Z) c a .7: 3$) and the hydroxylamine $18(7 \%$ from 15$)$, possessing a skeleton similar to that of tropane alkaloids such as the calystegines [20] [21]. The intermediates 14-16 were sufficiently pure to be directly transformed in yields which compare well to those obtained from pure compounds, while the epoxide 17 was best chromatographed, direct crystallization being difficult. The hydroxylamine $\mathbf{1 8}$ is presumably formed by intramolecular nucleophilic substitution by the oxyimino group either of the mesylate $\mathbf{1 6}$ or of the oxirane 17 , leading to a nitrone which reacts further by intramolecular nucleophilic addition of the primary OH group. Inter- and intramolecular nitrone formation from epoxides and oximes [22], and from epoxyoximes [23], respectively, and ring-chain tautomerism of N-(β-hydroxyalkyl)aldononitrones by a formal 5 -endo-trig process are well known [24]. The configuration of 18 could not be unambiguously deduced from the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ data, since similar ${ }^{3} J$ values are expected for $\mathbf{1 8}$ (derived from the mesylate 16) in a ${ }^{4} C_{1}$ conformation and for 20 (derived from the oxirane 17) in a $B_{\mathrm{N}, 3}$ conformation. As treatment of $\mathbf{1 7}$ with LiCl [23] in boiling THF produced the diastereoisomeric hydroxylamine $20(43 \%)$, 18 must possess the L-ido- and 20 the D-gluco-configuration.

The O-silylaldoxime or aldoxime function of $\mathbf{1 5 - 1 7}$ and $\mathbf{1 9}$ is evidenced by characteristic d 's between 6.9 and 7.6 ppm and $\mathrm{C}(1)$ signals at $149-155 \mathrm{ppm}$. The configuration of the $\mathrm{C}=\mathrm{N}$ bond of the major and minor diastereoisomers of these compounds is assigned on the basis of chemical-shift differences of the $\mathrm{H}-\mathrm{C}(1)$ and $\mathrm{H}-\mathrm{C}(2)$ signals, with $\mathrm{H}-\mathrm{C}(1)$ of the major isomer resonating at lower and $\mathrm{H}-\mathrm{C}(2)$ at higher field than the corresponding H of the minor isomer [25] [26].

The presence of the oxirane ring in 17 is evidenced by the shift to higher fields (as compared to the corresponding signals of 15 or 16) of the $\mathrm{H}-\mathrm{C}(5), \mathrm{H}-\mathrm{C}(6)$, and $\mathrm{H}^{\prime}-\mathrm{C}(6)$ signals, and by the small value for the geminal coupling constant (4.8 or 4.9 Hz for the (E) - or (Z)-isomer, resp.) for $\mathrm{H}-\mathrm{C}(6)$ and $\mathrm{H}^{\prime}-\mathrm{C}(6)$. The constitution of a 1,6-anhydro-5-deoxy-5-(hydroxyamino)pyranose is assigned to $\mathbf{1 8}$ on the basis of signals of 3 Bn groups, 7 H of the carbohydrate skeleton and $1 \mathrm{CD}_{3} \mathrm{OD}$ exchangeable $\mathrm{H}\left(\mathrm{OH}\right.$ bands at 3580 and at $3390 \mathrm{~cm}^{-1}$). In the ${ }^{13} \mathrm{C}$-NMR spectrum, a d is observed at 95.87 ppm , in keeping with the presence of a O, N-substituted C -atom; the mass spectrum shows $[M+\mathrm{H}]^{+}$at $m / z 448$. Osmometric molecular-weight determination confirms the monomeric nature of 18 .

The D-gluco-thiirane 19 was obtained in 86% yield $((E) /(Z)$ ca. 8:2) by exposing 17 to thiourea in MeOH [27] [12]. Conversion of the oxirane 17 into the thiirane 19 causes an upfield shift for the signals of $C(5)$ and $C(6)$.

Acid or base-catalyzed ring opening of 19 with O-nucleophiles went along with formation of other products, among them 2,3,4-tri- O-benzyl-5-thio-D-glucose, or with formation of complex mixtures. Good results (Scheme 2) were obtained with anhydrous HCl in dioxane or HBr in MeOH , which converted 19 into the salts of the hydroxylamines $\mathbf{2 1}$ or 22, respectively. After neutralisation, the hydroxylamines reverted partially back to 19; this process occurred within hours for the bromide 22 (as detected by TLC ${ }^{3}$).

[^2]Thus, 21 and 22 were immediately oxidized by active $\mathrm{MnO}_{2}[28]$ to give the 6 -halothiolactone oximes $23(73-81 \%)$ and $24(65-80 \%)$, respectively ${ }^{4}$). The iodide $25(86 \%)$ was obtained from the bromide 24 with NaI in boiling acetone. Conversion of the chloride 23 proceeded only very slowly under these conditions to yield, after 24 h , a $85: 15$ mixture of 23 and 25.

Scheme 2

a) $15 \% \mathrm{HCl}$ in dioxane, r.t., 75 min ; or: $\mathrm{LiBr}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{MeOH}, 0^{\circ}$ to r.t., 14 h. b) NaHCO_{3}. c) $\mathrm{MnO}_{2}, \mathrm{MeOH}$, r.t., $50 \mathrm{~min}, 23\left(73-81 \%\right.$ from 19) ; or MnO_{2}, MeOH , AcOEt , r.t., $30 \mathrm{~min}, 24$ ($65-80 \%$ from 19). d) NaI, acetone, reflux, $4 \mathrm{~h}, 86 \%$. e) KNO_{2}, DMF, $110-120^{\circ}, 200 \mathrm{~min}, 43 \%, f$ CsOAc, [18]crown-6, DM1, $80-90^{\circ}, 145 \mathrm{~min} ; 27$ $(42 \%$ from 24$)$ and 35% of $28 . g$) TEMPO, $\mathrm{Bu}_{3} \mathrm{SnH}$, benzene, r.t., $4 \mathrm{~h} ; 56 \%$ of $\mathbf{2 9}$; or $\mathbf{4 7} \%$ of $\mathbf{2 9}, 12 \%$ of $\mathbf{3 0}$, and 7% of 26. h) $\mathrm{Ac}_{2} \mathrm{O}$, pyridine, r.t., $18 \mathrm{~h} . i$) $\mathrm{Na}, \mathrm{NH}_{3}, \mathrm{THF} ; \mathrm{Ac}_{2} \mathrm{O}$, pyridine; 78%.) Pyridine hydrochloride, MeOH, CHCl_{3}, r.t., $2 \mathrm{~d}, 70 \%$. l) NaOMe , MeOH , r.t., $1 \mathrm{~h}, 74 \%$.

[^3]The displacement of the halide atom of 23,24 , or 25 gave unsatisfactory yields. Reaction of either $\mathbf{2 3}, \mathbf{2 4}$, or $\mathbf{2 5}$ with KNO_{2} produced the alcohol $\mathbf{2 6}$ in yields of only $40-45 \% ; 26$ was also obtained in poor yields (23%) by treating 25 with KO_{2} [29] [30]. The reaction of 24 with CsOAc in 1,3-dimethylimidazolidin-2-one (DMI) produced 27 in $\mathbf{4 2 \%}$ yield, besides 35% of the alkene $\mathbf{2 8}$; other conditions gave even less acetate. The best results were obtained by treating 25 with 2,2,6,6-tetramethylpiperidin-1-oxyl radical (TEMPO) [31] [32] in the presence of $\mathrm{Bu}_{3} \mathrm{SnH}$ and afforded 29 (56%), the yield reflecting the laborious purification and the formation of by-products. The by-products were isolated in a preliminary experiment performed under slightly different conditions yielding 47% of $\mathbf{2 9}, 12 \%$ of $\mathbf{3 0}$, and 7% of 26 .

Birch reduction of 29 gave 10, which was isolated via the pentaacetate 32. It was not possible to directly isolate $\mathbf{1 0}$, as it was contaminated with an impurity, presumably 2,2,6,6-tetramethylpiperidine hydrochloride. Workup of the crude acetylation mixture and purification usually produced a 3:1 mixture of pentaacetate 32 and tetraacetate 33 ; reacetylation ($\mathrm{Ac}_{2} \mathrm{O} /$ pyridine) afforded pure $\mathbf{3 2}^{5}$) (78%), which was deacetylated $(\mathrm{NaOMe} / \mathrm{MeOH})$ to give $\mathbf{1 0}(74 \%)$. A pure sample of 33 was prepared by treating 32 with pyridine hydrochloride in $\mathrm{MeOH} / \mathrm{CHCl}_{3}$.

Abstract

The structure of the halides 23 and 24 is evidenced by their MS which show the characteristic isotope distribution of the signals of $\left[M+\mathrm{NH}_{4}\right]^{+}$and $[M+\mathrm{H}]^{+}$or $[M+\mathrm{H}]^{+}$, respectively. $[M+\mathrm{H}]^{+}$of $\mathbf{2 5}$ is found at m / z 590. In the ${ }^{13} \mathrm{C}$-NMR spectra, the signals of $\mathrm{C}(6)$ are found at 6.75 (25), 32.82 (24), 43.99 (23), and 62.48 ppm (26). A CD ${ }_{3} \mathrm{OD}$-exchangeable t at 2.26 ppm is found in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{2 6}$, indicating the presence of a primary OH group. The signals of $\mathrm{H}-\mathrm{C}(6)$ and $\mathrm{H}^{+}-\mathrm{C}(6)$ of 27 are shifted downfield by ca. 0.5 ppm , as compared to those of 26. The structure of 28 is evidenced by the MS $\left([M+H]^{+}\right.$at $\left.m / z 462\right)$ and the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum, which shows two $d^{\prime} \mathrm{s}$ at 5.57 and 5.71 ppm , characterized by the typical allylic coupling constant of 1.5 or 1.7 Hz , respectively.

The structure of 29 was established by X-ray analysis ${ }^{6}$). Notable bond lengths are $\mathrm{S}-\mathrm{C}(1) 1.754 \AA, \mathrm{~S}-\mathrm{C}(5) 1.840 \AA$, and $\mathrm{N}(1)-\mathrm{C}(1) 1.285 \AA$. The torsion angles $\mathrm{S}-\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{O}(1)$ and $\mathrm{O}(1)-\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$ are 3.3 and 177.6°, respectively, indicating these atoms to be in the same plane. The values found for $C(2)-C(3)-C(4)-C(5)$ and $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{S}-\mathrm{C}(5)$ and 26.3 and 13.2°, respectively, and are in keeping with the thiolactone oxime 29 adopting a distorted $B_{2,5}$ solid-state conformation as clearly visible from the ORTEP representation (Fig. I). The H,H coupling constants (see Table) indicate a $B_{2,5}$ conformation in CDCl_{3} solution. Similar ${ }^{3} J$ values are observed for compounds 23-27, evidencing that these compounds also adopt a $B_{2,5}$ conformation in solution. The ${ }^{13} \mathrm{C}$-NMR chemical-shift values for $\mathrm{C}(1)$ of 29 and 23-26 are very similar to each other ($\Delta \delta<1 \mathrm{ppm}$), and the (Z)-configuration ${ }^{7}$) was assigned to all these compounds, considering that chemical-shift values for the imino-C atom of (E) - and (Z)-lactone oximes or lactone-oxime phosphates differ by ca. $8-12 \mathrm{ppm}$ [36].

[^4]

Fig. 1. ORTEP representation of compound 29

Table. H,H-Coupling Constants of Compounds 23-27, 29, 32 and 10

	$J(2,3)$	$J(3,4)$	$J(4,5)$	$J(5,6)$	$J\left(5,6^{\prime}\right)$	$J\left(6,6^{\prime}\right)$	$J(2,4)$
$\mathbf{2 3}$	2.5	3.9	10.6	4.5	4.5		
$\mathbf{2 4}$	2.6	3.8	10.5	5.1	3.9		
$\mathbf{2 5}$	2.5	3.6	10.3	6.0	3.1	10.6	
$\mathbf{2 6}$	2.1	4.5	10.8	4.6	4.6		
$\mathbf{2 7}$	2.6	3.6	10.9	6.1	3.0	11.8	
$\mathbf{2 9}$	2.4	3.6	10.9	8.0	3.3	9.1	
$\mathbf{3 2}$	3.4	3.7	11.0	4.6	4.6		0.6
$\mathbf{1 0}$	5.8	6.5	9.8	6.3	3.3	12.1	

The presence of the Me group of $\mathbf{3 0}$ is indicated by a d at 1.36 ppm in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum, which also shows signals of 2 Bn groups. $[M+\mathrm{H}]^{+}$is found at $m / z 374$. Further evidence for the structure of $\mathbf{3 0}$ is obtained from the ${ }^{1} \mathrm{H}$-NMR spectrum of the diacetate 31 , showing the signal of $\mathrm{H}-\mathrm{C}(4)$ shifted to lower fields by $c a .1 .4 \mathrm{ppm}$. A qd at 3.86 ppm is assigned to $\mathrm{H}-\mathrm{C}(5)$ of 31 .

The pentaacetate 32 adopts a distorted $B_{2,5}$ conformation in CDCl_{3}, as indicated by the H, H coupling constants. The notable long-range coupling ${ }^{4} J(2,4)(0.6 \mathrm{~Hz})$ would not be expected for an ideal $B_{2,5}$ conformer. The ${ }^{1} \mathrm{H}$-NMR spectrum of 33 indicates the presence of 4 AcO groups and of a NOH function (exchangeable H at 8.26 $\mathrm{ppm})$. The signal of $\mathrm{C}(1)$ is shifted upfield by 9 ppm as compared to the corresponding resonance of 32 .

The structure of $\mathbf{1 0}$ was established by X-ray analysis ${ }^{6}$) (Fig.2). The configuration of the thiolactone oxime is again (Z). There are two symmetry-independent molecules in the asymmetric unit, but there are no significant differences between their conformations. The molecules only differ in the way they are H -bonded to neighbouring molecules. In the solid state, $\mathbf{1 0}$ adopts a flattened ${ }^{4} C_{1}$ conformation as indicated by the torsional angles $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{S}(1)-\mathrm{C}(5)$ and $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$ which are $-34.2(-30.9)^{\circ}$ or 62.5
(63.1) ${ }^{\circ}$, respectively. The atoms $\mathrm{O}(1), \mathrm{N}(1), \mathrm{C}(1)$, and $\mathrm{S}(1)$ are in the same plane with $\mathrm{C}(2)$ slightly above it, as shown by the torsion angles $\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{O}(1)$ and $\mathrm{O}(1)-\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$ of $-1.6(-1.4)^{\circ}$ and $-170.9(-172)^{\circ}$, respectively. These torsion angles compare well with those found for the lactam oxime 3 [3], but $C(2)$ of 3 is in the same plane as the lactam-oxime function, indicating a more half-chair-like conformation of 3. Notable bond lengths of $\mathbf{1 0}$ are $\mathrm{S}(1)-\mathrm{C}(1) 1.760(1.765) \AA, \mathrm{S}(1)-\mathrm{C}(5) 1.822$ (1.827) \AA, and $\mathrm{C}(1)-\mathrm{N}(1)$, which is $1.277(1.279) \AA$. The values of the vicinal coupling constants $J(2,3)$ and $J(3,4)(5.8$ and 6.5 Hz$)$ of $\mathbf{1 0}$ suggest a mixture of conformers in $\mathrm{D}_{2} \mathrm{O}$ solution, probably $B_{2,5}$ and ${ }^{4} H_{3}$ or ${ }^{4} C_{1}$.

Fig. 2. ORTEP representation of compound 10
The thiolactone oxime 10 is a very weak competitive inhibitor of sweet-almond β-glucosidase ($K_{1} \approx 50 \mathrm{~mm}, \mathrm{pH} 6.8$) and of Agrobacterium β-glucosidase ($K_{\mathrm{I}}=10.8 \mathrm{~mm}$, pH 7.0); it binds to the enzymes several hundred times more weakly than the lactone oxime 1, and several thousand times more weakly than the lactam oxime 3 , in keeping with the transition-state character of $\mathbf{1}, \mathbf{3}$, and their derivatives, and the character of substrate analogs of the 5 -thiosugars 6-9.

We thank Prof. Dr. S. Withers, University of British Columbia, Department of Chemistry, 2036 Main Mall, Vancouver, B.C., Canada V6T 1Z1, for measuring the inhibition constant against Agrobacterium β-glucosidase, Dr. A. Linden, Organisch-chemisches Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, for the X-ray structure determinations, and the Swiss National Science Foundation and F. Hoffmann-La Roche AG, Basel, for generous support.

Experimental Part

General. Solvents were distilled before use. Active MnO_{2} was prepared following a procedure by Attenburrow [28]. Normal workup implies distribution of the crude product between the indicated org. solvent and $\mathrm{H}_{2} \mathrm{O}$, drying of the org. layer $\left(\mathrm{MgSO}_{4}\right)$, filtration, and evaporation of the filtrate. TLC: Merck silica gel 60F-254 plates; detection by heating with 5% vanillin in conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ or with mostain [37$]\left(400 \mathrm{ml}\right.$ of $10 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ soln., 20 g of $\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Mo}_{7} \mathrm{O}_{24} \cdot 6 \mathrm{H}_{2} \mathrm{O}, 0.4 \mathrm{~g}$ of $\left.\mathrm{Ce}\left(\mathrm{SO}_{4}\right)_{2}\right)$. Flash chromatography (FC): silica gel Merck $60(0.04-0.063 \mathrm{~mm})$. M.p.: uncorrected. NMR Spectra: ${ }^{1} \mathrm{H}$ at 300 MHz , and ${ }^{13} \mathrm{C}$ at 50 MHz , if not indicated otherwise; chemical shifts δ in ppm and coupling constants J in Hz .

2,3,4-Tri-O-benzyl-D-glucopyranose [17] [38] (13). $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}(23.5 \mathrm{ml})$ was added at 2° to a soln. of $11(20.0 \mathrm{~g}$, 46.3 mmol) in $\mathrm{Ac}_{2} \mathrm{O}(340 \mathrm{ml})$, and stirring was continued at 2° for 60 min . The soln. was diluted with toluene (100 $\mathrm{ml})$ and evaporated (bath $40-45^{\circ}$). The residue was co-evaporated 4 times with toluene (150 ml each) and dried i.v. for 60 min . To a soln. of the remaining yellow oil (12) in dioxane (745 ml) was added $0.5 \mathrm{Maq} . \mathrm{H}_{2} \mathrm{SO}_{4}(85 \mathrm{ml})$. The
soln. was refluxed for 205 min . Sat. aq. NaHCO_{3} soln. (150 ml) was added (until pH 6 was reached), and 600 ml of the solvent were removed by evaporation. The resulting suspension was treated with $\mathrm{H}_{2} \mathrm{O}(11)$ and cooled to 10° to give a precipitate which was collected. Recrystallisation from $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$ and then from $\mathrm{CHCl}_{3} /$ hexane gave 13 ($13.9 \mathrm{~g}, 67 \% ; \alpha-\mathrm{D} / \beta-\mathrm{D} c a .1: 1$) as a colorless solid. M.p.77-81 ${ }^{\circ}$. FC (hexane/AcOEt 1:2) of the mother liquor gave $13(2.09 \mathrm{~g}, 10 \% ; \alpha-\mathrm{D} / \beta-\mathrm{D} c a .1: 1)$ as a colorless solid. M.p. $79-81^{\circ} . R_{\mathrm{f}}$ (hexane/AcOEt 1:2) 0.21. IR (CHCl_{3}): $3600 \mathrm{~m}, 3410 \mathrm{~m}$ (br). , $3070 \mathrm{w}, 3010 \mathrm{~m}, 2930 \mathrm{~m}, 2880 \mathrm{~m}, 1955 \mathrm{w}, 1875 \mathrm{w}, 1810 \mathrm{w}, 1500 \mathrm{~m}, 1460 \mathrm{~m}, 1400 \mathrm{w}, 1360 \mathrm{~m}, 1245 \mathrm{w}$, $1150 s, 1080 s$ (br.), $1030 s, 915 w, 835 w, 700 s .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 1.88\left(t, J \approx 6,0.5 \mathrm{H}\right.$, exchange with $\mathrm{CD}_{3} \mathrm{OD}$, $\mathrm{OH}-\mathrm{C}(6)) ; 2.35$ (br. $s, 0.5 \mathrm{H}$, exchange with $\mathrm{CD}_{3} \mathrm{OD}, \mathrm{OH}-\mathrm{C}(6)$); 3.30-3.42 ($\mathrm{m}, 7 \mathrm{H}, 6 \mathrm{H}$ after addn. of $\mathrm{CD}_{3} \mathrm{OD}$); $4.61-4.97(m, 6.5 \mathrm{H}) ; 5.18\left(t, J \approx 3,0.5 \mathrm{H}, d\right.$ after addn. of $\left.\mathrm{CD}_{3} \mathrm{OD}, \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(1)\right) ; 7.25-7.37(m, 15$ arom. H$)$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) ; 61.50(t) ; 61.83(t) ; 70.76(d) ; 72.63(t) ; 74.54(t) ; 74.79(2 t) ; 75.17(d) ; 75.43(2 t) ; 77.59(d)$; $77.83(d) ; 79.89(d) ; 81.36(d) ; 83.05(d) ; 84.27(d) ; 90.55(d) ; 97.05(d) ; 127.19-128.39$ (several $d) ; 137.74-138.44$ (several s). CI-MS $\left(\mathrm{NH}_{3}\right): 469(25), 468\left(100,\left[M+\mathrm{NH}_{4}\right]^{+}\right), 450\left(17, M^{+}\right)$.
(E)- and (Z)-2,3,4-Tri-O-benzyl-6-O-/(tert-butyl)dimethylsilyl/-D-glucose Oxime O-/(tert-Butyl)dimethylsilyl] Ether (15) $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}(43.75 \mathrm{~g}, 630 \mathrm{mmol})$ was added at 55° to a stirred soln. of $\mathrm{Na}(7.7 \mathrm{~g}, 335$ $\mathrm{mmol})$ in 96% aq. $\mathrm{EtOH}(1.4 \mathrm{l})$. Stirring was continued for 5 min and was followed by addition of $\mathbf{1 3}(35 \mathrm{~g}, 78$ $\mathrm{mmol})$ and 96% aq. EtOH (0.5 l). The mixture was stirred for 7.5 h at $55-60^{\circ}$ and filtered. The residue was washed with AcOEt , and the combined filtrates and washings were concentrated. Normal workup ($\mathrm{AcOEt}, \mathrm{H}_{2} \mathrm{O}$) gave crude $\mathbf{1 4}(36.8 \mathrm{~g})$. Yellow oil.

Molecular sieves (Union Carbide, type $3 \AA$, powder; 36 g) were dried in the reaction vessel at $130-140^{\circ}$ iv. for 18 h . After cooling to r.t., $1 H$-imidazole ($26.3 \mathrm{~g}, 387 \mathrm{mmol}$) was added and drying i.v.continued for 30 min at r.t. A soln. of $\mathbf{1 4}(36.0 \mathrm{~g}, 77 \mathrm{mmol})$ in dry DMF (360 ml) and $t-\mathrm{BuMe}_{2} \mathrm{SiCl}(29.2 \mathrm{~g}, 193 \mathrm{mmol})$ were added. The mixture was stirred for 40 min and filtered; the filtrate was poured into $\mathrm{H}_{2} \mathrm{O}(11)$ and extracted with hexane. The org. layers were washed $\left(\mathrm{H}_{2} \mathrm{O}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated to give a yellow clear oil (57 g) which was filtered through silica gel to give $15(50.0 \mathrm{~g}, 93 \%$; (E)/(Z) ca. 8:2). Colorless oil. FC (hexane/AcOEt 9:1) of crude $\mathbf{1 5}(861 \mathrm{mg})$ gave pure $15(815 \mathrm{mg}) . R_{\mathrm{f}}$ (hexane/AcOEt 9:1) $0.26 .[\alpha]_{\mathrm{D}}^{25}=+20.2\left(c=0.865, \mathrm{CHCl}_{3}\right)$. IR $\left(\mathrm{CHCl}_{3}\right): 3550 \mathrm{~m}(\mathrm{br}), 3090 w$, $3070 \mathrm{w}, 3000 \mathrm{~m}, 2960 \mathrm{~s}, 2930 \mathrm{~s}, 2890 \mathrm{~s}, 2860 \mathrm{~s}, 1595 \mathrm{w}, 1455 \mathrm{~m}, 1390 \mathrm{w}, 1360 \mathrm{w}, 1250 \mathrm{~m}, 1080 \mathrm{~s}$ (br.), $1030 \mathrm{~m}, 1010 \mathrm{w}, 915 \mathrm{~s}$, 840 s . ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 0.0-0.14\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{Me}_{2} \mathrm{Si}\right) ; 0.85-0.92(m, 18 \mathrm{H}, t-\mathrm{BuSi}) ; 2.58(d, J=5.8,0.8 \mathrm{H}$, exchange with $\left.\mathrm{CD}_{3} \mathrm{OD}, \mathrm{OH}-\mathrm{C}(5)(E)\right) ; 2.66\left(d, J=4.6,0.2 \mathrm{H}\right.$, exchange with $\left.\mathrm{CD}_{3} \mathrm{OD}, \mathrm{OH}-\mathrm{C}(5)(Z)\right) ; 3.59-3.95(\mathrm{~m}, 5 \mathrm{H})$; 4.37-4.86 ($m, 6.8 \mathrm{H}, \mathrm{PhCH}, \mathrm{H}-\mathrm{C}(2)(E)$); $5.12(d d, J=4.9,6.6,0.2 \mathrm{H}, \mathrm{H}-\mathrm{C}(2)(Z)$); $7.08(d, J=6.6,0.2 \mathrm{H}$, $\mathrm{H}-\mathrm{C}(1)(Z)) ; 7.14-7.32(m, 15$ arom. H$) ; 7.52(d, J=8.1,0.8 \mathrm{H}, \mathrm{H}-\mathrm{C}(1)(E)) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$: major isomer: -5.50 to -5.16 (several q) ; 17.98-18.27 (several $s) ; 25.63-26.13$ (several q); $63.79(t) ; 71.08(t) ; 71.08(d) ; 73.40(t)$; $74.38(t) ; 76.84(d) ; 77.58(d) ; 79.32(d) ; 127.00-128.16$ (several $d) ; 137.44-138.40$ (several $s) ; 153.19(d)$; minor isomer: $71.81(d) ; 71.99(t) ; 73.73(t) ; 74.49(t) ; 154.50(d)$. CI-MS ($\left.\mathrm{NH}_{3}\right) ; 696(20), 695(51), 694\left(100,[M+\mathrm{H}]^{+}\right)$, 562 (24). Anal. calc. for $\mathrm{C}_{39} \mathrm{H}_{59} \mathrm{NO}_{6} \mathrm{Si}_{2}$ (694.080): C 67.49, H 8.57, N 2.02; found: C 67.30, H 8.85, N 2.02.
(E)- and (Z)-2,3,4-Tri-O-benzyl-6-O-[(tert-butyl)dimethylsilyl]-5-O-(methylsulfonyl)-D-glucose Oxime O-/(tert-Butyl)dimethylsilyl] Ether (16), (E)-and (Z)-5,6-Anhydro-2,3,4-tri-O-benzyl-L-idose Oxime (17), and 1,6-Anhydro-2,3,4-tri-O-benzyl-5- N -hydroxy- β-L-idopiperidinose ($\mathbf{1 8}$). $\mathrm{MsCl}(8.31 \mathrm{~g}, 73 \mathrm{mmol})$ was added to a stirred ice-cold soln. of $15(5.03 \mathrm{~g}, 7.3 \mathrm{mmol})$ in dry pyridine (100 ml); stirring was continued for $14 \mathrm{~h} \mathrm{at} 0^{\circ} \rightarrow \mathrm{r}$. . The soln. was concentrated to about half of its volume, poured into sat. aq. NaHCO_{3} soln., stirred for 20 min , and extracted with AcOEt. The org. layers were washed (sat. aq. NaHCO_{3} soln., $\mathrm{H}_{2} \mathrm{O}$), dried (MgSO_{4}), and evaporated. The remaining oil was co-evaporated with toluene and dried i.v. for 30 min : crude $\mathbf{1 6}(6.05 \mathrm{~g})$. Yellow oil. An anal. sample was co-evaporated with CHCl_{3} and dried i.v. R_{f} (hexane/AcOEt 85:15) $0.30 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right):-0.03$ to $0.18\left(m, 12 \mathrm{H}, \mathrm{Me}_{2} \mathrm{Si}\right) ; 0.82-0.99(m, 18 \mathrm{H}, t$-BuSi); $2.81(s, 2.4 \mathrm{H}, \mathrm{MsO}(E)) ; 2.83(s, 0.6 \mathrm{H}, \mathrm{MsO}(Z)) ; 3.77-3.90$ $(m, 2.2 \mathrm{H}) ; 3.97(d d, J=4.1,11.4,0.8 \mathrm{H}) ; 4.03(t, J=4.1,0.8 \mathrm{H}) ; 4.13(d d, J=3.1,6.1,0.2 \mathrm{H}) ; 4.32(d d, J=6.1$, $8.0,0.8 \mathrm{H}, \mathrm{H}-\mathrm{C}(2)(E)) ; 4.38-4.69\left(m, 6 \mathrm{H}, \mathrm{PhCH} H_{2}\right) ; 4.72-4.79(m, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(5)(E / Z)) ; 5.01(d d, J=4.5,6.5,0.2$ $\mathrm{H}, \mathrm{H}-\mathrm{C}(2)(Z)) ; 7.09(d, J=6.5,0.2 \mathrm{H}, \mathrm{H}-\mathrm{C}(1)(Z)) ; 7.21-7.30(\mathrm{~m}, 15 \mathrm{arom} . \mathrm{H}) ; 7.56(d, J=8.0,0.8 \mathrm{H}, \mathrm{H}-\mathrm{C}(1)$ (E)).

A soln. of $\mathrm{Bu}_{4} \mathrm{NF} \cdot 3 \mathrm{H}_{2} \mathrm{O}(5.72 \mathrm{~g}, 18 \mathrm{mmol})$ in THF (70 ml) was added to a soln. of crude $\mathbf{1 6}(6.05 \mathrm{~g})$ in THF (50 $\mathrm{ml})$. The soln. was kept at r.t. for 210 min and evaporated. FC (hexane/AcOEt 3:1) of the residue gave $\mathbf{1 7}(2.63 \mathrm{~g}$, 81%; $(E) /(Z)$ ca. 7:3; yellowish solid) and $18(0.24 \mathrm{~g}, 7 \%$; colorless solid).

An anal. sample of 17 was obtained by recrystallisation in AcOEt/pentane. R_{f} (hexane/AcOEt 1:1) 0.43. M.p. $76-78^{\circ} .[\alpha]_{\mathrm{D}}^{25}=-2.9\left(c=0.86, \mathrm{CHCl}_{3}\right)$. IR $\left(\mathrm{CHCl}_{3}\right): 3580 \mathrm{~m}, 3340 \mathrm{~m}$ (br.), $3060 \mathrm{~m}, 3005 \mathrm{~m}, 2870 \mathrm{~m}, 1950 \mathrm{w}, 1875 w$, $1810 w, 1495 m, 1455 m, 1395 m, 1355 w, 1250 \mathrm{~m}, 1090 \mathrm{~s}, 1065 \mathrm{~s}, 1030 \mathrm{~s}, 920 \mathrm{~m}, 880 \mathrm{w}, 850 \mathrm{w}, 820 \mathrm{w}, 700 \mathrm{~s} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right): 2.36(d d, J=2.7,4.8,0.7 \mathrm{H}, \mathrm{H}-\mathrm{C}(6)(E)) ; 2.41(d d, J=2.7,4.9,0.3 \mathrm{H}, \mathrm{H}-\mathrm{C}(6)(Z)) ; 2.49(t, J \approx 4.5,0.7$ $\left.\mathrm{H}, \mathrm{H}^{\prime}-\mathrm{C}(6)(E)\right) ; 2.56\left(t, J \approx 4.6,0.3 \mathrm{H}, \mathrm{H}^{\prime}-\mathrm{C}(6)(Z)\right) ; 3.09-3.16(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(5)(E / Z)) ; 3.25(d d, J=4.2,6.8$,
$0.7 \mathrm{H}, \mathrm{H}-\mathrm{C}(4)(E)) ; 3.35(d d, J=5.6,6.7,0.3 \mathrm{H}, \mathrm{H}-\mathrm{C}(4)(Z)) ; 3.68(d d, J=4.2,5.8,0.7 \mathrm{H}, \mathrm{H}-\mathrm{C}(3)(E)) ; 3.85(d d$, $J=4.1,5.5,0.3 \mathrm{H}, \mathrm{H}-\mathrm{C}(3)(Z)) ; 4.36(d d, J=5.8,7.7,0.7 \mathrm{H}, \mathrm{H}-\mathrm{C}(2)(E)) ; 4.41-4.82(\mathrm{~m}, 6 \mathrm{H}, \mathrm{PhCH}) ; 5.09(d d$, $J=4.0,6.5,0.3 \mathrm{H}, \mathrm{H}-\mathrm{C}(2)(Z)) ; 6.94(d, J=6.5,0.3 \mathrm{H}, \mathrm{H}-\mathrm{C}(1)(Z)) ; 7.24-7.36(m, 15.7 \mathrm{H}, \operatorname{arom} . \mathrm{H}, \mathrm{NOH}(E))$; $7.43(d, J=7.7,0.7 \mathrm{H}, \mathrm{H}-\mathrm{C}(1)(E)) ; 7.56(s, 0.3 \mathrm{H}, \mathrm{NOH}(Z))$; irrad. at $7.43 \rightarrow$ change at $4.36(d)$; irrad. at $6.94 \rightarrow$ change at $5.09(d)$; irrad. at $3.09-3.16 \rightarrow$ change at $3.35,3.25,2.56,2.49(d), 2.41,2.36(d) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right)$: major isomer: $42.93(t) ; 52.78(d) ; 71.16(t) ; 72.20(t) ; 74.18(t) ; 76.37(d) ; 79.92(d) ; 80.19(d)$; 127.39-128.33 (several d); 137.26-137.75 (several s); $149.28(d)$; minor isomer: $43.36(t) ; 52.55(d) ; 70.70(d) ; 71.93$ (t); $72.49(t) ; 74.48(t) ; 151.10(d)$ CI-MS $\left(\mathrm{NH}_{3}\right): 449(28), 448\left(100,[M+\mathrm{H}]^{+}\right), 447(42), 430(12), 303(10), 195$ (30), 133 (12), 116 (45), 108 (26), 106 (11), 86 (10). Anal. calc. for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{NO}_{5}$ (447.532): C 72.46, H 6.53, N 3.13; found: C 72.34, H 6.31, N 3.04 .

An anal. sample of 18 was obtained by recrystallisation in benzene/pentane. R_{f} (hexane/AcOEt 1:1) 0.29. M.p. $134^{\circ} .[\alpha]_{D}^{25}=+29.6\left(c=1.13, \mathrm{CHCl}_{3}\right)$. IR $\left(\mathrm{CHCl}_{3}\right): 3580 \mathrm{~m}, 3390 \mathrm{~m}(\mathrm{br}),. 3060 w, 3030 w, 3005 m, 2900 \mathrm{~m}, 2870 \mathrm{~m}$, $1950 w, 1875 w, 1810 w, 1495 m, 1455 m, 1365 m, 1315 w, 1190 w, 1110 s, 1090 s, 1070 s, 1030 m, 985 w, 960 m, 905 m, 850 m$, 700 s . ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 3.53(\mathrm{~m}, 1 \mathrm{H}) ; 3.62-3.70(\mathrm{~m}, 2 \mathrm{H}) ; 3.78(\mathrm{~m}, 1 \mathrm{H}) ; 3.98(d d, J=4.6,7.8,1 \mathrm{H}) ; 4.06(d$, $J=7.7,1 \mathrm{H}) ; 4.64\left(s, 2 \mathrm{H}, \mathrm{PhCH}_{2}\right) ; 4.64\left(d, J=11.9, \mathrm{PhCH}_{2}\right) ; 4.71\left(d, J=12.0, \mathrm{PhCH}_{2}\right) ; 4.80\left(s, 2 \mathrm{H}, \mathrm{PhCH}_{2}\right)$; 5.00 (br. $s, 1 \mathrm{H}$); 5.33 (s, exchange with $\mathrm{CD}_{3} \mathrm{OD}, \mathrm{NOH}$); 7.24-7.37 ($m, 15$ arom. H). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): 3.53$ (t, $J \approx 3.9, \mathrm{H}-\mathrm{C}(5)) ; 3.63(d d, J=1.4,7.8, \mathrm{H}-\mathrm{C}(2)) ; 3.71(d d, J=3.7,8.1, \mathrm{H}-\mathrm{C}(4)) ; 3.89(t, J \approx 8.0, \mathrm{H}-\mathrm{C}(3)) ; 4.05$ $\left.(d d, J=4.5,7.4, \mathrm{H}-\mathrm{C}(6)) ; 4.12\left(d, J=7.5, \mathrm{H}^{\prime}-\mathrm{C}(6)\right) ; 4.33(d, J=12.1, \mathrm{PhCH})_{2}\right) ; 4.37(d, J \approx 12, \mathrm{PhCH}) ; 4.41(d$, $\left.J=12.1, \mathrm{PhCH}_{2}\right) ; 4.5 \mathrm{I}\left(d, J=12.1, \mathrm{PhCH}_{2}\right) ; 4.75\left(s\right.$, exchange with $\left.\mathrm{CD}_{3} \mathrm{OD}, \mathrm{NOH}\right) ; 4.83\left(d, J=11.5, \mathrm{PhCH}_{2}\right)$; $4.90(d, J=11.5, \mathrm{PhCH}) ; 5.10(\mathrm{br} . \mathrm{s}, \mathrm{H}-\mathrm{C}(1)) ; 7.03-7.35(\mathrm{~m}, 15$ arom. H$) ;$ irrad. at $3.89 \rightarrow$ change at 3.71 and 3.63 ; irrad. at $3.71 \rightarrow$ change at $3.53(d)$ and 3.89 ; irrad. at $3.53 \rightarrow$ change at $3.71(d, J \approx 8)$ and $4.05(d, J \approx 7.5)$; irrad. at $3.63 \rightarrow$ change at $3.89 .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$: $64.11(t) ; 66.58(d) ; 72.11(t) ; 72.26(t) ; 75.37(t) ; 78.70(d) ; 81.12(d)$; $81.81(d) ; 95.87(d) ; 127.49-128.43$ (several $d) ; 137.79(s) ; 137.87(s) ; 138.44(s) . \mathrm{CI}-\mathrm{MS}\left(\mathrm{NH}_{3}\right): 449(30), 448(100$, $[M+\mathrm{H}]^{+}$), 402 (11), $340(24), 216(15), 186$ (25), 108 (13), 91 (8). Anal. calc. for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{NO}_{5}$ (447.532): C 72.46, H 6.53, N 3.13; found: C 72.31, H 6.38, N 3.31. Molecular-weight determination (osmometry): $481\left(\mathrm{CHCl}_{3}\right)$.
(E)- and (Z)-2,3,4-Tri-O-benzyl-5,6-dideoxy-5,6-epithio-D-glucose Oxime (19). A soln. of 17 (2.15 g, 4.8 mmol) and thiourea ($1.83 \mathrm{~g}, 24 \mathrm{mmol}$) in $\mathrm{MeOH}(50 \mathrm{ml})$ was kept at r.t. for 5 d and evaporated. FC (hexane/AcOEt $3: 1)$ of the residue gave $19(1.91 \mathrm{~g}, 86 \% ;(E) /(Z) c a .8: 2)$ as a yellowish solid, which was recrystallized in $\mathrm{AcOEt} /$ hexane. R_{f} (hexane/AcOEt 6:4) 0.42, 0.5. M.p. 91-93 ${ }^{\circ}$. $[\alpha]_{\mathrm{D}}^{25}=-9.1\left(c=0.715, \mathrm{CHCl}_{3}\right)$. IR (CHCl_{3}): $3580 \mathrm{~m}, 3330 \mathrm{~m}$ (br.), $3060 \mathrm{~m}, 3000 \mathrm{~m}, 2870 \mathrm{~m}, 1950 \mathrm{w}, 1875 \mathrm{w}, 1810 \mathrm{w}, 1610 \mathrm{w}, 1590 \mathrm{w}, 1495 \mathrm{~m}, 1455 \mathrm{~m}, 1395 \mathrm{~m}, 1355 \mathrm{~m}$, $1330 \mathrm{~m}, 1305 \mathrm{~m}, 1200 \mathrm{~m}, 1070 \mathrm{~s}$ (br.), $1045 \mathrm{~s}, 1030 \mathrm{~s}, 920 \mathrm{~m}$ (br.), $700 \mathrm{~s} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $2.18(\mathrm{dd}, \mathrm{J}=1.1$, $5.5,0.8 \mathrm{H}, \mathrm{H}-\mathrm{C}(6)(E)) ; 2.20(d d, J=1.0,5.5,0.2 \mathrm{H}, \mathrm{H}-\mathrm{C}(6)(Z)) ; 2.44\left(d d, J=1.0,6.1,0.2 \mathrm{H}, \mathrm{H}^{\prime}-\mathrm{C}(6)(Z)\right) ; 2.48$ $\left(d d, J=1.1,6.0,0.8 \mathrm{H}, \mathrm{H}^{\prime}-\mathrm{C}(6)(E)\right) ; 3.07(d d, J=2.5,8.1,0.8 \mathrm{H}, \mathrm{H}-\mathrm{C}(4)(E)) ; 3.10-3.19(m, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(5)$ $(E / Z)) ; 3.23(d d, J \approx 3.5,7.5,0.2 \mathrm{H}, \mathrm{H}-\mathrm{C}(4)(Z)) ; 3.87(d d, J=2.5,7.4,0.8 \mathrm{H}, \mathrm{H}-\mathrm{C}(3)(E)) ; 3.89(d d, J=4.3,6.9$, $0.2 \mathrm{H}, \mathrm{H}-\mathrm{C}(3)(Z)) ; 4.42(t, J \approx 7.7,0.8 \mathrm{H}, \mathrm{H}-\mathrm{C}(2)(E)), 4.49-4.71(m, 5 \mathrm{H}, \mathrm{PhCH}) ; 4.83(d, J=11.4,0.2 \mathrm{H}$, $\left.\mathrm{PhCH}_{2}(Z)\right) ; 4.88\left(d, J=11.4,0.8 \mathrm{H}, \mathrm{PhCH}_{2}(E)\right) ; 5.20(d d, J \approx 6,7,0.2 \mathrm{H}, \mathrm{H}-\mathrm{C}(2)(Z)) ; 6.94(d, J=7.2,0.2 \mathrm{H}$, $\mathrm{H}-\mathrm{C}(1)(Z)) ; 7.26-7.34(m, 15.8 \mathrm{H}$, arom. $\mathrm{H}, \mathrm{NOH}(E)) ; 7.47(d, J=7.8,0.8 \mathrm{H}, \mathrm{H}-\mathrm{C}(1)(E)) ; 7.55(s, 0.2 \mathrm{H}, \mathrm{NOH}$ $(Z)) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$: major isomer: $25.49(t) ; 33.18(d) ; 71.39(t) ; 72.44(t) ; 74.79(t) ; 77.15(d) ; 81.62(d)$; 82.76 (d); 127.15-128.52 (several d); 137.44-137.92 (several s); 149.24 (d); minor isomer: 24.55 (t); 70.87 (d); 72.13 (t); $72.95(t) ; 74.69(t) ; 80.93(d) ; 82.31(d) ; 150.47(d)$ CI-MS $\left(\mathrm{NH}_{3}\right): 481\left(3,\left[M+\mathrm{NH}_{4}\right]^{+}\right), 465(19), 464$ (50, $\left.[M+\mathrm{H}]^{+}\right), 463\left(73, M^{+}\right), 449(29), 448(100), 431(13), 417(11), 416(38)$. Anal. calc. for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{NO}_{4} \mathrm{~S}(463.601): \mathrm{C}$ 69.95, H 6.31, N 3.02, S 6.92; found: C 69.68, H 6.33, N 2.98 , S. 6.64.

1,6-Anhydro-2,3.4-tri-O-benzyl-5-N-hydroxy- β-D-glucopiperidinose (20). A soln. of 17 ($325 \mathrm{mg}, 0.73 \mathrm{mmol}$) and $\mathrm{LiCl}(615 \mathrm{mg}, 14.5 \mathrm{mmol})$ in dry THF (50 ml) was boiled under reflux for 22 h and then concentrated. Usual workup ($\mathrm{AcOEt}, \mathrm{H}_{2} \mathrm{O}$) and FC (hexane/AcOEt 7:3) afforded $20\left(139 \mathrm{mg}, 43 \%\right.$). Colorless oil. R_{r} (hexane/AcOEt $6: 4) 0.32 .[\alpha]_{D}^{2 S}=-4.1\left(c=1.015, \mathrm{CHCl}_{3}\right)$. IR $\left(\mathrm{CHCl}_{3}\right): 3540 \mathrm{~m}, 3400 \mathrm{~m}$ (br.), $3070 w, 3010 \mathrm{~m}, 2920 \mathrm{~m}, 2870 \mathrm{~m}, 1955 w$, $1875 w, 1815 w, 1500 \mathrm{~m}, 1460 \mathrm{~m}, 1400 \mathrm{w}, 1365 \mathrm{~m}, 1330 \mathrm{w}, 1315 \mathrm{w}, 1270 \mathrm{w}, 1240 \mathrm{w}, 1195 \mathrm{w}, 1115 \mathrm{~s}, 1090 \mathrm{~s}, 1075 \mathrm{~s}, 1055 \mathrm{~s}$, $1030 \mathrm{~s}, 955 \mathrm{~m}, 915 \mathrm{~m}, 850 \mathrm{~m}, 700 \mathrm{~s}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): 3.26(d d, J=7.1,12.1 \mathrm{H}-\mathrm{C}(6)) ; 3.49(d d, J \approx 3.6,8.4, \mathrm{H}-\mathrm{C}(2))$; $\left.3.52(d d, J \approx 4.0,7.9, \mathrm{H}-\mathrm{C}(4)) ; 3.65(t, J \approx 8.2, \mathrm{H}-\mathrm{C}(3)) ; 3.80\left(d, J=12.2, \mathrm{H}^{\prime}-\mathrm{C}(6)\right) ; 4.24(d, J=12.0, \mathrm{PhCH})_{2}\right) ;$ $4.28(d d, J=4.1,6.9, \mathrm{H}-\mathrm{C}(5)) ; 4.34\left(d, J=11.9, \mathrm{PhCH}_{2}\right) ; 4.44\left(d, J=12.1, \mathrm{PhCH}_{2}\right) ; 4.50(d, J=12.1, \mathrm{PhCH})$; $4.78\left(d, J=11.6, \mathrm{PhCH}_{2}\right) ; 4.84\left(d, J=11.6, \mathrm{PhCH}_{2}\right) ; 5.26(d, J=3.5, \mathrm{H}-\mathrm{C}(1)) ; 7.02-7.3 \mathrm{l}(\mathrm{m}, 15$ arom. H$) ; 7.84(\mathrm{~s}$, exchange with $\mathrm{CD}_{3} \mathrm{OD}, \mathrm{NOH}$); irrad. at $3.26 \rightarrow$ change at 3.80 and 4.28 ; irrad. at $3.65 \rightarrow$ change at 3.49 and 3.52 . ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) ; 59.88(t) ; 72.83(t) ; 72.91(t) ; 73.01(d) ; 75.28(t) ; 78.93(d) ; 79.29(d) ; 81.89(d) ; 97.56(d)$; 127.49-128.39 (several d); $137.75(s) ; 137.99(s) ; 138.51(s)$. CI-MS $\left(\mathrm{NH}_{3}\right): 449(20), 448\left(100,[M+\mathrm{H}]^{+}\right), 433(15)$, 432 (72), 430 (15). Anal. calc. for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{NO}_{5}$ (447.532): C 72.46, H 6.53, N 3.13; found: C 72.35, H 6.78, N 3.43. Molecular-weight determination (osmometry): $478\left(\mathrm{CHCl}_{3}\right)$.
$\mathrm{N}-$ (2,3,4-Tri-O-benzyl-6-chloro-6-deoxy-5-thio- α-D-glucopyranosyl) hydroxylamine (21) and (2)-2,3,4 Tri-O-benzyl-6-chloro-6-deoxy-5-thio-D-gluconhydroximo-1,5-lactone (23). A soln. of 19 ($250 \mathrm{mg}, 0.54 \mathrm{mmol}$) in 15% $(w / w) \mathrm{HCl}$ in dry dioxane (12.5 ml) wa stirred at r.t. for 75 min , poured into sat. aq. NaHCO_{3} soln. and extracted with AcOEt . Normal workup (sat. aq. NaHCO_{3} soln., $\mathrm{H}_{2} \mathrm{O}$) gave crude 21 as a yellowish oil which was dried i.v. for 30 min , dissolved in $\mathrm{MeOH}(15 \mathrm{ml})$, and treated with $\mathrm{MnO}_{2}(150 \mathrm{mg}, 1.72 \mathrm{mmol})$. The mixture was stirred for 50 \min at r.t. and filtered through Celite. The residue was washed with AcOEt. Filtrate and washings were evaporated. FC (hexane/AcOEt 8:2) gave 23 ($218 \mathrm{mg}, 81 \%$). Yellowish oil.

Data of 21: IR (CHCl_{3}): $3590 \mathrm{~m}, 3400 \mathrm{w}$ (br.), $3290 \mathrm{w}, 3100 \mathrm{w}, 3070 \mathrm{w}, 3010 \mathrm{~m}, 2930 \mathrm{~m}, 2880 \mathrm{~m}, 1605 \mathrm{w}, 1495 \mathrm{w}$, $1455 m, 1355 m, 1055 s(\mathrm{br} ., \mathrm{sh}), 1030 s, 930 w, 700 \mathrm{~m} .{ }^{\mathrm{I}} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): c a .1 .6$ (br. $\left.s, \mathrm{NH}\right) ; 3.57(d d d, J=2.6,4.1$, 9.3, $\mathrm{H}-\mathrm{C}(5)$); 3.72-3.83 ($\mathrm{m}, \mathrm{H}-\mathrm{C}(3), \mathrm{H}-\mathrm{C}(4), \mathrm{H}-\mathrm{C}(6)$); $3.94(d d, J=4.3,9.3 \mathrm{H}-\mathrm{C}(2)$); $4.11(d d, J=4.2,11.6$, $\left.\mathrm{H}^{\prime}-\mathrm{C}(6)\right) ; 4.31(d, J=4.2, \mathrm{H}-\mathrm{C}(1)) ; 4.72(s, 2 \mathrm{H}, \mathrm{PhCH}) ; 4.73\left(d, J=10.7, \mathrm{PhCH}_{2}\right) ; 4.78\left(d, J=11.0, \mathrm{PhCH}_{2}\right)$; $4.88\left(d, J=10.8, \mathrm{PhCH}_{2}\right) ; c a .4 .9$ (br. $\left.s, \mathrm{OH}\right) ; 4.96\left(d, J=10.7, \mathrm{PhCH}_{2}\right) ; 7.26-7.36$ ($m, 15$ arom. H).

Data of 23: R_{f} (hexane/AcOEt 6:4) 0.44. $[\alpha]_{\mathrm{D}}^{25}=+75.0\left(c=1.74, \mathrm{CHCl}_{3}\right)$. IR (CHCl_{3}): $3570 \mathrm{~m}, 3270 \mathrm{~m}$ (br.), $3060 w, 3005 m, 2970 m, 1950 w, 1875 w, 1810 w, 1605 m, 1500 m, 1455 m, 1430 w, 1390 w, 1355 m, 1315 w, 1295 w, 1245 w$, $1180 w, 1090 s, 1070 s, 1030 m, 990 w, 965 w, 935 m, 835 w, 700 s .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 3.81(d d, J=3.9,10.6, \mathrm{H}-\mathrm{C}(4))$; $3.87\left(d, J=4.5, \mathrm{H}-\mathrm{C}(6), \mathrm{H}^{\prime}-\mathrm{C}(6)\right) ; 3.93(d d, J=2.4,3.8, \mathrm{H}-\mathrm{C}(3)) ; 4.17(t d, J=4.4,10.6, \mathrm{H}-\mathrm{C}(5)) ; 4.39(d$, $\left.J=11.7, \mathrm{PhCH}_{2}\right) ; 4.40(d, J=2.5, \mathrm{H}-\mathrm{C}(2)) ; 4.42\left(d, J=12.0, \mathrm{PhCH}_{2}\right) ; 4.49\left(d, J=11.1, \mathrm{PhCH}_{2}\right) ; 4.56-4.60(m$, $2 \mathrm{H}, \mathrm{PhCH}) ; 4.69\left(d, J=11.9, \mathrm{PhCH}_{2}\right) ; 7.21-7.37\left(\mathrm{~m}, 15\right.$ arom. H); $7.86\left(s\right.$, exchange with $\left.\mathrm{CD}_{3} \mathrm{OD}, \mathrm{NOH}\right)$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) ; 42.11(d) ; 43.99(t) ; 70.62(t) ; 71.51(t) ; 72.92(t) ; 76.35(d) ; 81.90(d) ; 82.16(d) ; 127.72-128.40$ (several d); $136.93(2 s) ; 137.47(s) ; 15 \mathrm{I} .86(s) . \mathrm{CI}-\mathrm{MS}\left(\mathrm{NH}_{3}\right): 517\left(6,\left[M+\mathrm{NH}_{4}\right]^{+}\right), 515\left(15,\left[M+\mathrm{NH}_{4}\right]^{+}\right), 501$ (12), $500\left(42,[M+H]^{+}\right), 499(32), 498\left(100,\left[M+\mathrm{H}^{+}\right), 354\right.$ (12). Anal. calc. for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{ClNO}_{4} \mathrm{~S}(498.037): \mathrm{C} 65.11$, H 5.67, N 2.81, Cl 7.12, S 6.44; found: C 65.01, H 5.87, N 2.89, Cl 7.24, S 6.25.
(Z)-2,3,4-Tri-O-benzyl-6-bromo-6-deoxy-5-thio- D -gluconhydroximo-1,5-lactone (24). Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(5.4 \mathrm{ml}$) in $\mathrm{MeOH}(20 \mathrm{ml})$ was added dropwise to an ice-cold soln. of $19(1.229 \mathrm{~g}, 2.7 \mathrm{mmol})$ and $\mathrm{LiBr}(4.61 \mathrm{~g}, 53 \mathrm{mmol})$ in $\mathrm{MeOH}(65 \mathrm{ml})$. The soln. was stirred 14 h at $0^{\circ} \rightarrow$ r.t., poured into sat. aq. NaHCO_{3} soln. (500 ml), and extracted twice with $\mathrm{Et}_{2} \mathrm{O}$ (500 ml each). The combined org. layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated and the residue (yellow oil) immediately dissolved in $\mathrm{MeOH}(75 \mathrm{ml}) / \mathrm{AcOEt}(12 \mathrm{ml})$ and treated with $\mathrm{MnO}_{2}(1.475 \mathrm{~g}, 17 \mathrm{mmol})$. The mixture was stirred vigorously for 30 min at r.t. and filtered through Celite ; the residue was washed with AcOEt. Filtrate and washings were concentrated. FC (hexane $/ \mathrm{Et}_{2} \mathrm{O}$ 6:4) gave 19 (impure, 0.11 g) and 24 ($1.103 \mathrm{~g}, 77 \%$). Yellow, clear oil. R_{f} (hexane/AcOEt 6:4) 0.48. $[\alpha]_{\mathrm{D}}^{25}=+65.4\left(c=1.035, \mathrm{CHCl}_{3}\right)$. IR (CHCl_{3}): $3570 \mathrm{~m}, 3260 \mathrm{~m}$ (br.), $3060 m, 3005 m, 2970 m, 1950 w, 1875 w, 1810 w, 1605 w, 1495 m, 1455 m, 1420 w, 1390 w, 1350 m, 1315 w, 1265 w, 1185 w$, $1090 \mathrm{~s}, 1070 \mathrm{~s}, 1030 \mathrm{~m}, 985 \mathrm{~m}, 945 \mathrm{~m}, 910 \mathrm{~m}, 830 \mathrm{w}, 700 \mathrm{~s} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 3.73(d, J=5.1, \mathrm{H}-\mathrm{C}(6)) ; 3.73(d$, $\left.J=3.9, \mathrm{H}^{\prime}-\mathrm{C}(6)\right) ; 3.77(d d, J=3.7,10.5, \mathrm{H}-\mathrm{C}(4)) ; 3.94(d d, J=2.5,3.8, \mathrm{H}-\mathrm{C}(3)) ; 4.13(d d d, J=3.9,5.1,10.4$, $\mathrm{H}-\mathrm{C}(5)) ; 4.39\left(d, J=11.7, \mathrm{PhCH}_{2}\right) ; 4.40(d, J=2.7, \mathrm{H}-\mathrm{C}(2)) ; 4.42(d, J=12.1, \mathrm{PhCH}) ; 4.51(d, J=11.2$, $\left.\mathrm{PhCH}_{2}\right) ; 4.57(d, J=11.7, \mathrm{PhCH}) ; 4.58\left(d, J=11.1, \mathrm{PhCH}_{2}\right) ; 4.69\left(d, J=11.8, \mathrm{PhCH}_{2}\right) ; 7.22-7.39(m, 15$ arom. $\mathrm{H}) ; 7.96\left(s\right.$, exchange with $\left.\mathrm{CD}_{3} \mathrm{OD}, \mathrm{NOH}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 32.82(t) ; 41.72(\mathrm{~d}) ; 70.59(t) ; 71.56(t) ; 73.02(t)$; $76.42(d) ; 82.29(d) ; 82.81(d) ; 127.70-128.69$ (several $\left.d) ; 136.97(2 s) ; 137.53(s) ; 151.69(s) . \mathrm{Cl}-\mathrm{MS}^{(} \mathrm{NH}_{3}\right): 545$ (31), $544\left(100,\left[M+\mathrm{H}^{+}\right), 543(30), 542\left(96,[M+\mathrm{H}]^{+}\right), 464(14), 463\left(20,[M+\mathrm{H}-\mathrm{Br}]^{+}\right), 431(13)\right.$. Anal. calc. for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{BrNO}_{4} \mathrm{~S}$ (542.487): C 59.78, H 5.20, Br 14.73, N $2.58, \mathrm{~S} 5.91$; found: C $60.04, \mathrm{H} 5.41, \mathrm{Br} 15.00, \mathrm{~N} 2.58$, S 5.62.
(Z)-2,3,4-Tri-O-benzyl-6-deoxy-6-iodo-5-thio-D-gluconhydroximo-1,5-lactone (25). A soln. of 24 (164 mg , 0.3 mmol) and $\mathrm{NaI}(907 \mathrm{mg}, 6.0 \mathrm{mmol})$ in acetone (10 ml) was boiled under reflux for $4 \mathrm{~h}(\rightarrow$ precipitate). Normal workup (AcOEt , sat. aq. NaHCO_{3} soln., $\mathrm{H}_{2} \mathrm{O}$). FC (hexane/AcOEt 8:2) afforded 25 ($154 \mathrm{mg}, 86 \%$). Colorless oil. $R_{\mathrm{f}}\left(\mathrm{CHCl}_{3} / \mathrm{EtOH} 99: 1\right) 0.35 .[\alpha]_{\mathrm{D}}^{25}=+51.8\left(c=0.73, \mathrm{CHCl}_{3}\right) . \mathrm{IR}\left(\mathrm{CHCl}_{3}\right): 3580 \mathrm{~m}, 3280 \mathrm{~m}$ (br.) , $3100 \mathrm{w}, 3080 \mathrm{~m}$, $3010 \mathrm{~m}, 2980 \mathrm{~m}, 1955 w, 1875 w, 1815 w, 1610 \mathrm{~m}, 1500 \mathrm{~m}, 1460 \mathrm{~m}, 1420 \mathrm{w}, 1395 \mathrm{w}, 1355 \mathrm{~m}, 1315 \mathrm{w}, 1095 \mathrm{~s}, 1075 \mathrm{~s}, 1030 \mathrm{~m}$, $990 \mathrm{w}, 930 \mathrm{~m}, 700 \mathrm{~m} .{ }^{\mathrm{I}} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 3.50(d d, J=6.0,10.6, \mathrm{H}-\mathrm{C}(6)) ; 3.57\left(d d, J=3.1,10.6, \mathrm{H}^{\prime}-\mathrm{C}(6)\right) ; 3.64(d d$, $J=3.6,10.4, \mathrm{H}-\mathrm{C}(4)) ; 3.73(d d d, J=3.1,6.0,10.2, \mathrm{H}-\mathrm{C}(5)) ; 3.94(d d, J=2.5,3.6, \mathrm{H}-\mathrm{C}(3)) ; 4.39(d, J=11.7$, $\left.\mathrm{PhCH} 2) ; 4.40(d, J \approx 2.9, \mathrm{H}-\mathrm{C}(2)) ; 4.42\left(d, J=12.2, \mathrm{PhCH} H_{2}\right) ; 4.52(d, J=11.1, \mathrm{PhCH})_{2}\right) ; 4.58(d, J \approx 10.5,2 \mathrm{H}$, $\left.\mathrm{PhCH}_{2}\right) ; 4.69\left(d, J=11.8, \mathrm{PhCH}_{2}\right) ; 7.22-7.40\left(m, 15\right.$ arom. H); 7.78 (br. s, exchange with $\mathrm{CD}_{3} \mathrm{OD}, \mathrm{NOH}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 6.75(t) ; 41.27(d) ; 70.62(t) ; 71.53(t) ; 73.00(t) ; 76.37(d) ; 82.22(d) ; 84.26(d) ; 127.75-128.64$ (several d); $136.94(2 s) ; 137.53(s) ; 151.96(s)$. CI-MS $\left(\mathrm{NH}_{3}\right): 591(30), 590\left(100,[M+\mathrm{H}]^{+}\right), 464(24), 463(20$, $\left.[M+\mathrm{H}-\Gamma]^{+}\right), 431(21)$. Anal. calc. for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{INO}_{4} \mathrm{~S}$ (589.487): C 55.01, H 4.79, I 21.53, N $2.38, \mathrm{~S} 5.44$; found: C 54.90, H 5.00, 121.30 , N 2.52, S 5.69.
(2)-2,3,4-Tri-O-benzyl-5-thio-D-gluconhydroximo-1,5-lactone (26). A mixture of 24 ($216 \mathrm{mg}, 0.4 \mathrm{mmol}$) and $\mathrm{KNO}_{2}(848 \mathrm{mg}, 9.9 \mathrm{mmol})$ in dry DMF (10 ml) was stirred at $110-120^{\circ}$ for 200 min . Normal workup (AcOEt, $\mathrm{H}_{2} \mathrm{O}$) and FC (hexane/AcOEt 6:4) of the crude gave $26\left(82 \mathrm{mg}, 43 \%\right.$). Yellow oil. R_{f} (hexane/AcOEt 6:4) 0.21 .
$[\alpha]_{\mathrm{D}}^{25}=+76.4\left(c=0.633, \mathrm{CHCl}_{3}\right) . \operatorname{IR}\left(\mathrm{CHCl}_{3}\right): 3560 \mathrm{~m}, 3260 \mathrm{~m}(\mathrm{br}),. 3060 w, 3030 \mathrm{~m}, 3000 \mathrm{~m}, 2920 \mathrm{w}, 2870 \mathrm{~m}, 1950 \mathrm{w}$, $1870 w, 1810 w, 1605 w, 1495 m, 1455 m, 1350 \mathrm{~m}, 1180 \mathrm{w}, 1070 \mathrm{~s}, 1030 \mathrm{~m}, 945 \mathrm{~m}, 700 \mathrm{~s} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 2.26(t$, $J \approx 6.3$, exchange with $\left.\mathrm{CD}_{3} \mathrm{OD}, \mathrm{OH}-\mathrm{C}(6)\right) ; 3.77-3.82\left(m, \mathrm{H}-\mathrm{C}(4), \mathrm{H}-\mathrm{C}(6), \mathrm{H}^{\prime}-\mathrm{C}(6)\right) ; 3.92(t d, J=4.6,10.8$, $\mathrm{H}-\mathrm{C}(5)) ; 3.95(d d, J=2.1,4.5, \mathrm{H}-\mathrm{C}(3)) ; 4.38(d, J=2.1, \mathrm{H}-\mathrm{C}(2)) ; 4.41\left(d, J=11.8, \mathrm{PhCH}_{2}\right) ; 4.42(d, J=11.7$, $\left.\left.\left.\left.\mathrm{PhCH}_{2}\right) ; 4.53(d, J=11.3, \mathrm{PhCH})_{2}\right) ; 4.59(d, J=11.6, \mathrm{PhCH})_{2}\right) ; 4.64(d, J=11.3, \mathrm{PhCH})_{2}\right) ; 4.69(d, J=11.8$, PhCH ${ }_{2}$); 7.20-7.40 ($m, 15$ arom. H); 7.91 (br. s, exchange with $\mathrm{CD}_{3} \mathrm{OD}, \mathrm{NOH}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 41.77$ (d); $62.48(t) ; 70.43(t) ; 71.49(t) ; 72.91(t) ; 76.36(d) ; 82.89(d) ; 83.34(d) ; 127.85-128.63$ (several $d) ; 137.05(2 s)$; $137.41(s) ; 151.50(s)$. CI-MS $\left(\mathrm{NH}_{3}\right): 497\left(10,\left[M+\mathrm{NH}_{4}\right]^{+}\right), 481(19), 480\left(100,[M+\mathrm{H}]^{+}\right), 464$ (12). Anal. calc. for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{NO}_{5} \mathrm{~S}(479.592)$: C 67.62, H 6.10, N $2.92, \mathrm{~S} 6.68$; found: C 67.56, H 6.39, N 3.16, S 6.70.

6-O-Acetyl-2,3,4-tri-O-benzyl-5-thio-D-gluconhydroximo-1,5-lactone (27) and 2,3,4-Tri-O-benzyl-5-thio-D-xylo-hex-5-enonhydroximo-1,5-lactone (28). A mixture of 24 ($50 \mathrm{mg}, 0.09 \mathrm{mmol}$), [18]crown- $6(6 \mathrm{mg}$), and CsOAc ($177 \mathrm{mg}, 0.9 \mathrm{mmol}$) was dried i.v. for 30 min , dissolved in DMI (1 ml), and stirred over 145 min at $80-90^{\circ}$. Normal workup ($\mathrm{AcOEt}, \mathrm{H}_{2} \mathrm{O}$) and FC (hexane/AcOEt 3:1) afforded $27(20 \mathrm{mg}, 42 \%)$ and $28(15 \mathrm{mg}, 35 \%)$, both as yellow oils.

Data of 27: R_{f} (hexane/AcOEt 6:4) 0.35 . IR (CHCl_{3}): $3570 \mathrm{~m}, 3270 \mathrm{~m}$ (br.), $3060 \mathrm{~m}, 3000 \mathrm{~m}, 2930 \mathrm{~m}, 2870 \mathrm{~m}$, $1950 w, 1875 w, 1810 w, 1740 s, 1605 m, 1495 m, 1455 s, 1385 s, 1365 s, 1250 s, 1190 m, 1070 s$ (br.), 1030s, $985 w, 950 s$, $910 w, 700 \mathrm{~s} .{ }^{\mathrm{I}} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 1.99(s, \mathrm{AcO}) ; 3.74(d d, J=3.6,10.9, \mathrm{H}-\mathrm{C}(4)) ; 3.94(d d, J=2.6,3.6, \mathrm{H}-\mathrm{C}(3))$; $4.10(d d d, J=3.0,6.1,10.8, \mathrm{H}-\mathrm{C}(5)) ; 4.25(d d, J=6.1,11.8, \mathrm{H}-\mathrm{C}(6)) ; 4.37-4.47(m, 5 \mathrm{H}, \mathrm{PhCH}, \mathrm{H}-\mathrm{C}(2)$, $\left.\mathrm{H}^{\prime}-\mathrm{C}(6)\right) ; 4.56\left(d, J=11.4, \mathrm{PhCH} H_{2}\right) ; 4.58\left(d, J=11.7, \mathrm{PhCH}_{2}\right) ; 4.70\left(d, J=11.9, \mathrm{PhCH}_{2}\right) ; 7.19-7.40(m, 15$ arom. H); $8.31(s, \mathrm{NOH}) . \mathrm{CI}-\mathrm{MS}\left(\mathrm{NH}_{3}\right): 540(8), 539\left(27,\left[M+\mathrm{NH}_{4}\right]^{+}\right), 524(16), 523(48), 522\left(100,[M+\mathrm{H}]^{+}\right), 521(14)$, 506 (19), 480 (12), 464 (24), 463 (67).

Data of 28: R_{f} (hexane/AcOEt 6:4) 0.46 . IR $\left(\mathrm{CHCl}_{3}\right): 3570 \mathrm{~m}, 3270 \mathrm{~m}$ (br.), $3060 \mathrm{~m}, 3010 \mathrm{~m}, 2870 \mathrm{~m}, 1955 \mathrm{w}$, $1875 w, 1810 w, 1605 m, 1500 m, 1455 m, 1390 w, 1355 m, 1315 w, 1185 w, 1075 s$ (br.), $1030 \mathrm{~m}, 950 \mathrm{~m}, 910 \mathrm{~m}, 700 \mathrm{~s}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 3.81(d d, J=2.5,5.4, \mathrm{H}-\mathrm{C}(3)) ; 4.20(t d, J=1.6,5.4, \mathrm{H}-\mathrm{C}(4)) ; 4.28(d, J=2.5, \mathrm{H}-\mathrm{C}(2)) ; 4.35$ $\left(d, J=12.0, \mathrm{PhC} H_{2}\right) ; 4.50\left(d, J=11.8, \mathrm{PhCH}_{2}\right) ; 4.51\left(d, J=11.8, \mathrm{PhCH}_{2}\right) ; 4.57(d, J=11.8, \mathrm{PhCH} 2) ; 4.65(d$, $\left.J=12.0, \mathrm{PhCH}_{2}\right) ; 4.70\left(d, J=11.8, \mathrm{PhCH}_{2}\right) ; 5.57(d, J=1.5, \mathrm{H}-\mathrm{C}(6)) ; 5.71\left(d, J=1.7, \mathrm{H}^{\prime}-\mathrm{C}(6)\right) ; 7.22-7.35(m$, 15 arom. H); 8.03 (s, NOH). CI-MS (NH_{3}): 463 (64), 462 ($100,[\mathrm{M}+\mathrm{H}]^{+}$), 308 (39).

Treatment of $\mathbf{2 5}$ with 2,2,6,6-Tetramethylpiperidin-1-oxyl Radical (TEMPO): 26, (Z)-2,3,4-Tri-O-benzyl-6-O-(2,2,6,6-tetramethylpiperidin-I-yl)-5-thio-D-gluconhydroximo-1,5-lactone (29), 2,3-Di-O-benzyl-6-deoxy-5-thio-D-gluconhydroximo-1,5-lactone (30), and 2,3-Di-O-benzyl-6-deoxy-5-thio-D-gluconhydroximo-1,5-lactone 1 -N,4Diacetate (31) a) TEMPO ($1.75 \mathrm{~g}, 11.2 \mathrm{mmol}$) was added to a soln. of $\mathbf{2 5}(1.3 \mathrm{~g}, 2.2 \mathrm{mmol})$ in benzene (200 ml). A soln. of $\mathrm{Bu}_{3} \mathrm{SnH}(6.48 \mathrm{~g}, 22.3 \mathrm{mmol})$ in benzene (7 ml) was added over 15 min at $\mathrm{r} . \mathrm{t}$. and stirring was continued for 4 h . The decolorized soln. was evaporated to a yellow oil. FC (hexane $/ \mathrm{Et}_{2} \mathrm{O} 65: 35 \rightarrow \mathrm{Et}_{2} \mathrm{O}$) produced Fraction $A\left(R_{\mathrm{f}}\right.$ (hexane $/ \mathrm{Et}_{2} \mathrm{O} 1: 1$) ca. 0.3) and $B\left(R_{\mathrm{r}} c a .0 .15,0.07\right.$). Fr. A : The material was dried i.v. at $70-80^{\circ}$ for 5 h and resubjected to FC (hexane/ $\mathrm{Et}_{2} \mathrm{O} 65: 35$) to give $29(635 \mathrm{mg}, 47 \%)$, which was crystallized (hexane/ $\mathrm{Et}_{2} \mathrm{O}$) to give colorless prisms. Fr. B: The material was resubjected to FC (hexane $/ \mathrm{Et}_{2} \mathrm{O} 45: 55$) to give $\mathbf{3 0}(98 \mathrm{mg}, 12 \%$; colorless oil) and $\mathbf{2 6}$ ($73 \mathrm{mg}, 7 \%$; yellow oil). An anal. sample of $\mathbf{3 0}$ was acetylated (pyridine $/ \mathrm{Ac}_{2} \mathrm{O} 1: 1,2 \mathrm{ml}$) for 18 hat r.t., the soln. then diluted with toluene and evaporated, and the residue co-evaporated with toluene and dried $i . v$. to give 31.
b) TEMPO ($1.58 \mathrm{~g}, 10 \mathrm{mmol}$) was added to a soln. of $25(1.19 \mathrm{~g}, 2 \mathrm{mmol})$ in benzene $(100 \mathrm{ml}) . \mathrm{Bu}_{3} \mathrm{SnH}(5.88 \mathrm{~g}$, 20 mmol) was added after 5 min and the soln. kept at r, t for $4 \mathrm{~h}(\rightarrow$ decolorization). The soln, was evaporated to a yellow oil. FC (hexane/AcOEt 85:15) afforded a red oil which was dried i.b. at 60° for 90 min to give a yellow oil $(1.40 \mathrm{~g})$. The latter was resubjected to FC (hexane/ $\mathrm{Et}_{2} \mathrm{O} 65: 35$), dried $i . v$. at 75° for 2 h and overnight at r.t. to yield $29(699 \mathrm{mg}, 56 \%)$ as a yellow oil which crystallized upon standing at r.t. for several weeks.

Data of 29: R_{f} (hexane $/ \mathrm{Et}_{2} \mathrm{O}$ 1:1) 0.3. M.p. $116-117^{\circ} .[\alpha]_{\mathrm{D}}^{25}=+62.4\left(c=0.83, \mathrm{CHCl}_{3}\right)$. IR $\left(\mathrm{CHCl}_{3}\right): 3565 m$, 3260 m (br.), $3000 \mathrm{~m}, 2970 \mathrm{~m}, 2930 \mathrm{~m}, 2870 \mathrm{~m}, 1950 \mathrm{w}, 1870 \mathrm{w}, 1810 \mathrm{w}, 1600 \mathrm{w}, 1495 \mathrm{w}, 1470 \mathrm{~m}, 1455 \mathrm{~m}, 1375 \mathrm{~m}, 1360 \mathrm{~m}$, $1090 s, 1070 \mathrm{~s}, 1025 m, 955 m, 695 \mathrm{~s} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 1.14-1.68(m, 18 \mathrm{H}) ; 3.72(d d, J=3.6,10.9, \mathrm{H}-\mathrm{C}(4))$; $3.89-3.96(m, \mathrm{H}-\mathrm{C}(3), \mathrm{H}-\mathrm{C}(6)) ; 4.10(d d d, J=3.1,8.0,11.2, \mathrm{H}-\mathrm{C}(5)) ; 4.21\left(d d, J=3.3,9.1, \mathrm{H}^{\prime}-\mathrm{C}(6)\right) ; 4.37(d$, $J=2.4, \mathrm{H}-\mathrm{C}(2)) ; 4.38\left(d, J=11.7, \mathrm{PhCH}_{2}\right) ; 4.43(d, J=11.8, \mathrm{PhCH}) ; 4.44(d, J=11.4, \mathrm{PhCH}) ; 4.53(d, J \approx 11$, $\left.\mathrm{PhCH}_{2}\right) ; 4.57\left(d, J=11.8, \mathrm{PhCH}_{2}\right) ; 4.72\left(d, J=11.8, \mathrm{PhCH}_{2}\right) ; 7.18-7.85$ ($m, 15$ arom. H); 7.85 (br. s, NOH). ${ }^{13} \mathrm{C}$-NMR ($\left.\mathrm{CDCl}_{3}\right)$: $16.69(t) ; 19.90(q) ; 20.04(q) ; 32.42(q) ; 32.47(q) ; 39.12(2 t) ; 40.24(d) ; 59.90(s) ; 70.10(t)$; $71.07(t) ; 71.99(t) ; 74.82(t) ; 76.02(d) ; 81.83(d) ; 81.93(d) ; 127.28-128.65$ (several d); $136.98(s) ; 137.04(s)$; $137.55(s) ; 152.17(s)$. CI-MS $\left(\mathrm{NH}_{3}\right): 620(42), 619\left(100,[M+\mathrm{H}]^{+}\right), 513(12), 464(26), 374(11), 158(10), 142(19)$. Anal. calc. for $\mathrm{C}_{36} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}(618.833)$: C 69.87, H 7.49, N 4.53, S 5.18; found: C 69.65, H 7.68, N 4.28, S 5.40.

Data of 30: R_{f} (hexane/Et ${ }_{2} \mathrm{O} 4: 6$) 0.28 . IR (CHCl_{3}): $3570 \mathrm{~m}, 3290 \mathrm{~m}$ (br.), $3000 \mathrm{~m}, 2930 \mathrm{w}, 2870 \mathrm{~m}, 1950 \mathrm{w}, 1875 \mathrm{w}$, $1810 w, 1715 w, 1605 m, 1495 m, 1455 m, 1350 m, 1310 w, 1285 w, 1090 s, 1075 s, 1040 m, 1030 m, 950 m, 700 s .{ }^{1} H-N M R$
$\left(\mathrm{CDCl}_{3}\right): 1.36(d, J=6.3, \mathrm{Me}) ; 2.27$ (br. $\left.s, \mathrm{OH}-\mathrm{C}(4)\right) ; 3.52-3.65(\mathrm{~m}, \mathrm{H}-\mathrm{C}(4), \mathrm{H}-\mathrm{C}(5)) ; 3.72(d d, J=2.7,4.4$, $\mathrm{H}-\mathrm{C}(3)) ; 4.35(d, J=2.7, \mathrm{H}-\mathrm{C}(2)) ; 4.40\left(d, J=11.6, \mathrm{PhCH}_{2}\right) ; 4.51\left(d, J=12.0, \mathrm{PhCH}_{2}\right) ; 4.65(d, J \approx 11.5$, $\left.\mathrm{PhCH}_{2}\right) ; 4.67\left(d, J \approx 11.5, \mathrm{PhCH}_{2}\right) ; 7.26-7.38$ ($m, 10$ arom. H); 8.14 (br. s, NOH). CI-MS $\left(\mathrm{NH}_{3}\right): 375$ (24), 374 ($100,[M+\mathrm{H}]^{+}$).

Data of 31: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 1.21(d, J=6.9, \mathrm{Me}) ; 2.01(\mathrm{~s}, \mathrm{AcO}) ; 2.22(\mathrm{~s}, \mathrm{AcO}) ; 3.75(\mathrm{dd}, J \approx 2.9,3.5$, $\mathrm{H}-\mathrm{C}(3)) ; 3.86(q d, J=6.8,10.9, \mathrm{H}-\mathrm{C}(5)) ; 4.45\left(d, J=12.3, \mathrm{PhCH}_{2}\right) ; 4.51\left(d, J=11.7, \mathrm{PhCH}_{2}\right) ; 4.56(d, J=2.5$, $\mathrm{H}-\mathrm{C}(2)) ; 4.62\left(d, J=12.3, \mathrm{PhCH}_{2}\right) ; 4.70\left(d, J=11.7, \mathrm{PhCH}_{2}\right) ; 5.04(d d, J=3.6,10.8, \mathrm{H}-\mathrm{C}(4)) ; 7.22-7.39(\mathrm{~m}, 10$ arom. H).
(Z)-5-Thio-D-gluconhydroximo-1,5-lactone 1-N,2,3,4,6-Pentaacetate (32). Na (100 mg) was added in portions at -70° to $\mathrm{NH}_{3}(15-20 \mathrm{ml})$, and the mixture was stirred for 15 min . A soln. of 29 ($162 \mathrm{mg}, 0.26 \mathrm{mmol}$) in dry THF (5 ml) was added over 5 min to the deep-blue mixture, which was stirred for 10 min at -70° and for 60 min at reflux. After cooling to $-70^{\circ}, \mathrm{NH}_{4} \mathrm{Cl}(185 \mathrm{mg})$ was added. The decolorized mixture was allowed to warm to r.t. The residue was diluted with MeOH , the soln. evaporated, and the residue suspended in pyridine (10 ml). After addition of $\mathrm{Ac}_{2} \mathrm{O}$ (10 ml), the mixture was kept at r.t. for 20 h , diluted with toluene, and evaporated. The residue was co-evaporated with toluene. FC (hexane/AcOEt 1:1) of the crude afforded a yellowish oil (82 mg), which was reacetylated (pyridine $/ \mathrm{Ac}_{2} \mathrm{O} 1: 1,4 \mathrm{ml}$). Co-evaporation with toluene gave $32(86 \mathrm{mg}, 78 \%)$. R_{f} (hexane/ $\mathrm{AcOEt} 4: 6$) 0.29 . IR (CHCl_{3}): $3050 \mathrm{w}, 2950 \mathrm{w}, 1750 \mathrm{~s}$ (br.), $1590 \mathrm{~m}, 1460 \mathrm{w}, 1435 \mathrm{w}, 1370 \mathrm{~s}, 1245 \mathrm{~s}, 1175 \mathrm{~s}, 1145 \mathrm{~m}, 1070 \mathrm{~m}, 1040 \mathrm{~s}$, $1000 \mathrm{~m}, 930 \mathrm{~m}, 900 \mathrm{~m} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 2.09(s, \mathrm{AcO}) ; 2.10(s, \mathrm{AcO}) ; 2.12(s, \mathrm{AcO}) ; 2.17(s, \mathrm{AcO}) ; 2.23(s, \mathrm{AcO}) ;$ $4.03(t d, J=4.6,11.0, \mathrm{H}-\mathrm{C}(5)) ; 4.29\left(d, J=4.6, \mathrm{H}-\mathrm{C}(6), \mathrm{H}^{\prime}-\mathrm{C}(6)\right) ; 5.16(d d d, J=0.6,3.7, \mathrm{I} 0.9, \mathrm{H}-\mathrm{C}(4)) ; 5.24(t$, $J \approx 3.5, \mathrm{H}-\mathrm{C}(3)) ; 5.78(d d, J=0.6,3.4, \mathrm{H}-\mathrm{C}(2)) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 19.02-20.61$ (several $\left.q\right) ; 39.99(d) ; 61.06$ $(t) ; 70.87(d) ; 72.41(d) ; 72.45(d) ; 155.93(s) ; 166.83(s) ; 167.64(s) ; 168.68(s) ; 169.19(s) ; 170.12(s)$. CI-MS $\left(\mathrm{NH}_{3}\right): 438(18), 437\left(100,\left[M+\mathrm{NH}_{4}\right]^{+}\right)$.
(Z)-5-Thio-D-gluconhydroximo-1,5-lactone 2,3,4,6-Tetraacetate (33). A soln. of 32 ($116 \mathrm{mg}, 0.28 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(5 \mathrm{ml}) / \mathrm{MeOH}(15 \mathrm{ml})$ was treated with pyridine hydrochloride ($320 \mathrm{mg}, 2.76 \mathrm{mmol}$) and kept at r.t. for 2 d . Normal workup (AcOEt , sat. aq. NaHCO_{3} soln., $\mathrm{H}_{2} \mathrm{O}$), co-evaporation (toluene), and FC (hexane/AcOEt 1:1) afforded $33\left(73 \mathrm{mg}, 70 \%\right.$). Colorless oil. $R_{\mathrm{f}}\left(\mathrm{CHCl}_{3} / \mathrm{EtOH} 19: 1\right)$) 0.51 . IR $\left(\mathrm{CHCl}_{3}\right): 3564 w, 3258 w(\mathrm{br}$), $3042 w$, $3007 w, 1750 s, 1608 w, 1430 w, 1370 s, 1252 s, 1072 m, 1036 s, 981 w, 948 w, 909 m .{ }^{\prime} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 2.09(s, \mathrm{AcO})$; $2.10(\mathrm{~s}, \mathrm{AcO}) ; 2.10(\mathrm{~s}, \mathrm{AcO}) ; 2.16(\mathrm{~s}, \mathrm{AcO}) ; 3.96(\mathrm{~m}, \mathrm{H}-\mathrm{C}(5)) ; 4.30(d d, J=3.9,12.1, \mathrm{H}-\mathrm{C}(6)) ; 4.31(\mathrm{dd}, J=5.4$, 12.1, $\left.\mathrm{H}^{\prime}-\mathrm{C}(6)\right) ; 5.17-5.22(m, \mathrm{H}-\mathrm{C}(3), \mathrm{H}-\mathrm{C}(4)) ; 5.66(\mathrm{~m}, \mathrm{H}-\mathrm{C}(2)) ; 8.26$ (br. s, exchange with $\mathrm{CD}_{3} \mathrm{OD}, \mathrm{NOH}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 20.60-20.81$ (several q); $39.32(d) ; 61.57(t) ; 71.02(d) ; 72.81(d) ; 73.29(d) ; 146.93$ $(s) ; 168.39(s) ; 169.26(s) ; 169.55(s) ; 170.62(s)$. FAB-MS (3-nitrobenzyl alcohol): $400\left(6,[M+\mathrm{Na}]^{+}\right), 378(10$, $\left.[M+H]^{+}\right), 318(18)$.
(Z)-5-Thio-D-gluconhydroximo-1,5-lactone (10). NaOMe ($1 \mathrm{~m}, 0.6 \mathrm{ml}$) was added to a soln. of 32 ($245 \mathrm{mg}, 0.58$ mmol) in $\mathrm{MeOH}(30 \mathrm{ml})$. The soln. was stirred at r.t. over 60 min , and neutralized by addition of Dowex 50×8 $\left(\mathrm{H}^{+}\right)$. The mixture was filtered and the residue thoroughly washed with MeOH . The filtrate and the washings were evaporated to give a turbid oil ($109 \mathrm{mg}, 89 \%$). FC ($\mathrm{AcOEt} / \mathrm{MeOH} 17: 3$) afforded $10(90 \mathrm{mg}, 74 \%)$. Yellow oil. For analysis, a sample was crystallized ($\mathrm{Et}_{2} \mathrm{O}, \mathrm{MeOH}$). $R_{\mathrm{f}}(\mathrm{AcOEt} / \mathrm{MeOH} 8: 2) 0.38$. M.p. $>155^{\circ}$ (dec.). $[\alpha]_{\mathrm{D}}^{25}=+145.2$ $\left(c=0.635, \mathrm{H}_{2} \mathrm{O}\right)$. IR (KBr): $3370 \mathrm{v} s$ (br.), $2870 w, 1600 \mathrm{~m}, 1555 w, 1535 w, 1455 m, 1380 w, 1355 m, 1295 w, 1255 w$, $1230 w, 1140 w, 1105 m, 1070 s, 1055 m, 995 s, 960 s, 805 m, 745 m$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right): 3.55(d d d, J=3.4,6.4$, $9.8, \mathrm{H}-\mathrm{C}(5)) ; 3.72(d d, J=6.5,9.9, \mathrm{H}-\mathrm{C}(4)) ; 3.76(d d, J=5.9,6.4, \mathrm{H}-\mathrm{C}(3)) ; 3.87(d d, J=6.3,12.1, \mathrm{H}-\mathrm{C}(6)) ;$ $3.96\left(d d, J=3.3,12.1, \mathrm{H}^{\prime}-\mathrm{C}(6)\right) ; 4.39(d d, J=0.3,5.8, \mathrm{H}-\mathrm{C}(2)) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right): 48.00(d) ; 63.26(t)$; $75.59(d) ; 76.17(d) ; 79.13(d) ; 156.09(s)$. FAB-MS (glycerol): $302\left(5,[M+\mathrm{H}+\text { glycerol }]^{+}\right), 210\left(11,[M+\mathrm{H}]^{+}\right)$. Anal. calc. for $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{NO}_{5} \mathrm{~S}(209.22)$: C 34:44, H 5.30, N 6.69; found: C 34.32, H 5.45, N 6.46 .

Enzymology. Emulsin (from almonds, E.C. 3.2.1.21; Fluka Biochemica; used without any further purification) and Agrobacter β-glucosidase (purified as described previously [39]) were assayed using 4 -nitrophenyl β-d-glucopyranoside and 80 mm potassium-phosphate buffer (pH 6.8) or 50 mm sodium-phosphate buffer, 0.1% BSA (pH 7.0), respectively. Release of nitrophenolate was monitored at 37° by UV/VIS spectroscopy through measurements at 400 nm . The K_{1} values were determined by measurement of rates of a series of 5 substrate concentrations which bracket K_{M} value in the presence of 3 different concentrations of inhibitor. Data were analysed as described elsewhere [3].

REFERENCES

[1] D. Beer, A. Vasella, Helv. Chim. Acta 1986, 69, 267.
[2] B. Ganem, G. Papandreou, J. Am. Chem. Soc. 1991, 113, 8984.
[3] R. Hoos, A. B. Naughton, W. Thiel, A. Vasella, W. Weber, K. Rupitz, S. G. Withers, Hell. Chim. Acta 1993, 76, 2666.
[4] S.G. Withers, K. Rupitz, D. Trimbur, R.A.J. Warren, Biochemistry 1992, 31, 9979.
[5] T. Kajimoto, K. K.C. Liu, R. L. Pederson, Z. Zhong, Y. Ichikawa, J. A. Porco, C--H. Wong, J. Am. Chem. Soc. 1991, 113, 6187.
[6] H. Hashimoto, T. Fujimori, H. Yuasa, J. Carbohydr. Chem. 1990, 9, 683.
[7] W. Korytnyk, N. Angelino, O. Dodson-Simmons, M. Hanchak, M. Madson, S. Valentekovic-Horvath, Carbohydr. Res. 1983, 113, 166.
[8] I. I. Cubero, M. T. Plaza Lopez-Espinosa, A. C. Richardson, M. D. Suarez Ortega, Carbohydr. Res. 1993, 242, 109.
[9] G. Legler, E. Jülich, Carbohydr. Res. 1984, 128, 61.
[10] P. Ermert, A. Vasella, Helo. Chim. Acta 1991, 74, 2043.
[11] P. Ermert, A. Vasella, M. Weber. K. Rupitz, S. G. Withers, Carbohydr. Res., in press.
[12] E. Tanahashi, M. Kiso, A. Hasegawa, Carbohydr. Res. 1983, 117, 304.
[13] H. Hashimoto, M. Kawanishi, H. Yuasa, Tetrahedron Lett. 1991, 32, 7087.
[14] K. Blumberg, A. Fuccello, T. van Es, Carbohydr. Res. 1979, 70, 217.
[15] B. Helpap, Dissertation, Universität Hamburg, 1988.
[16] A. Chaperon, Diplomarbeit, Universität Zürich, 1991.
[17] R. Eby, S. J. Sondheimer, C. Schuerch, Carbohydr. Res. 1979, 73, 273.
[18] B. M. Aebischer, H. W. Hanssen, A. T. Vasella, W. B. Schweizer, J. Chem. Soc., Perkin Trans. 1 1982, 2139.
[19] M. Salunkhe, M. Hartmann, W. Schmid, E. Zbiral, Liebigs Ann. Chem. 1988, 187.
[20] O. Duclos, A. Dureault, J. D. Depezay, Tetrahedron Lett. 1992, 33, 1059.
[21] O. Duclos, M. Mondange, A. Dureault, J.C. Depezay, Tetrahedron Lett. 1992, 33, 8061.
[22] W. Kliegel, Liebigs Ann. Chem. 1970, 733, 192.
[23] R. Grigg, J. Markandu, Tetrahedron Lett. 1989, 30, 5489.
[24] W. Kliegel, H. Becker, Chem. Ber. 1977, 110, 2090.
[25] G. J. Karabatsos, R. A. Taller, Tetrahedron 1968, 24, 3347.
[26] J. M. J. Tronchet, F. Barbalat-Rey, N. Le-Hong, Helv. Chim. Acta 1971, 54, 2615.
[27] A. M. Creighton, L. N. Owen, J. Chem. Soc. 1960, 1024.
[28] J. Attenburrow, J. Chem. Soc. 1952, 1094.
[29] M. A. Brimble, G. M. Williams, R. Baker, J. Chem. Soc., Perkin Trans. I 1991, 2221.
[30] E. J. Corey, K. C. Nicolaou, M. Shibasaki, Y. Machida, C. S. Shiner, Tetrahedron Lett. 1975, 3183.
[31] R. J. Kinney, W. D. Jones, R. C. Bergman, J. Am. Chem. Soc. 1978, 100, 7902.
[32] A. G. M. Barrett, L. M. Meicher, B. C. B. Bezuidenhoudt, Carbohydr. Res. 1992, 232, 259.
[33] W. Walter, E. Schaumann, Synthesis 1971, 111.
[34] J. Waser, W. H. Watson, Nature (London) 1963, 198, 1297.
[35] M. E. Jung, D. D. Grove, S. I. Khan, J. Org. Chem. 1987, 52, 4570.
[36] D. Beer, A. Vasella, Helv. Chim. Acta 1985, 68, 2254.
[37] T. Storz, Diplomarbeit, Universität Konstanz, 1989.
[38] P. Kovac, H. J.C. Yeh, G. L. Jung, J. Carbohydr. Chem. 1987, 6, 423.
[39] J. B. Kempton, S. G. Withers, Biochemistry 1992, 3I, 9961.

[^0]: ${ }^{1}$) Present address: Laboratorium für Organische Chemie, ETH-Zentrum, Universitätstrasse 16, CH-8092 Zürich.

[^1]: ${ }^{2}$) For examples of related approaches toward 5-thioaldose derivatives, cf. [12-14].

[^2]: ${ }^{3}$) After 30 min , 19 became visible (5% vanillin in $\mathrm{H}_{2} \mathrm{SO}_{4}$) besides 22 as a characteristic yellow spot, which was preponderant after 40 h .

[^3]: ${ }^{4}$) Reaction of 19 with conc. aqueous HCl solution or with 48% aqueous HBr solution in dioxane, followed by oxidation of the intermediary hydroxylamines, produced 23 and 24 in yields of $c a .50 \%$ only.

[^4]: ${ }^{5}$) Co-evaporation of the original acetylation mixture with toluene followed by aqueous workup and FC yielded 32, contaminated with variable amounts of another impurity, probably acetamide.
 ${ }^{6}$) Atomic coordinates and bond lengths and angles were deposited with the Cambridge Crystallographic Data Center, University Chemical Laboratory, 12 Union Road, Cambridge CB2 1EW, England.
 ${ }^{7}$) S-Substituted thiohydroxamic acids are known to show a preference for the (Z)-form, for leading ref., see [33]; X-ray structures e.g. [34] [35].

